And why you would?
This blogpost doesn't answer this last question, but it's definetly going to answer the first one :)
Everything I'm writing is taken from this talk from David Beazley: youtube video.
Consider this post as a very little summary of its contents.
Let's start with the requirements:
Python 3.3
... that's all!
And let's see what you're getting:
If you define a file
structures.xml
like this<structures>
<structure name="Stock">
<field type="SizedString" maxlen="4">name</field>
<field type="PosInteger">shares</field>
<field type="PosFloat">price</field>
</structure>
</structures>
At the end of this blogpost you will get this
>>> from structures import *
>>> s = Stock("GOOG", 100, 99.0)
>>> # DEFAULT INITIALIZER
>>> s.name, s.shares, s.price
('GOOG', 1, 1.0)
>>> # TYPE CHECKING
>>> s.name = 100
TypeError: Expected <class 'str'>
>>> # CONSTRAINT CHECKING
>>> s.name = "GOOOOOOG"
ValueError: Too big
So, if this just aroused your curiosity, go on reading ;)
The first step is to have a look at descriptors.
Descriptors is just how properties are implemented in python [see this link]. In this example, we use them as classes to perform checks on values assignment.
So, let's take as example a descriptor that performs a check such that only values of type str within a certain length are allowed.
class StringDescriptor:
def __init__(self, name, maxlen):
self.name = name
self.maxlen = maxlen
def __set__(self, instance, value):
if type(value) != str:
raise TypeError("Wrong type, expected: %s" % str(str))
elif len(value) > self.maxlen:
raise ValueError("String too long")
instance.__dict__[self.name] = value
def __get__(self, instance, cls):
# Actually performs the default action. Just don't define this
# method to get the default behavior.
return instance.__dict__[self.name]
class Stock:
name = StringDescriptor("name", 4)
def __init__(self, name):
self.name = name
>>> st = Stock("GOOG")
>>> st.name = "GOOOOOG"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "post.py", line 10, in __set__
raise ValueError("String too long")
ValueError: String too long
>>> st.name = 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "post.py", line 8, in __set__
raise TypeError("Wrong type, expected: %s" % str(str))
TypeError: Wrong type, expected: <class 'str'>
To handle different descriptors, David uses a descriptors hierarchy like the following:
class Descriptor:
def __init__(self, name=None):
self.name = name
def __set__(self, instance, value):
instance.__dict__[self.name] = value
def __delete__(self, instance):
raise AttributeError("Can't delete")
class Typed(Descriptor):
ty = object
def __set__(self, instance, value):
if not isinstance(value, self.ty):
raise TypeError('Expected %s' % self.ty)
super().__set__(instance, value)
class Sized(Descriptor):
def __init__(self, *args, maxlen, **kwargs):
self.maxlen = maxlen
super().__init__(*args, **kwargs)
def __set__(self, instance, value):
if len(value) > self.maxlen:
raise ValueError('Too big')
super().__set__(instance, value)
class String(Typed):
ty = str
class Integer(Typed):
ty = int
class Float(Typed):
ty = float
Then merges the descriptors using multiple inheritance... But pay attention at MRO! (method resolution order)
class Positive(Descriptor):
def __set__(self, instance, value):
if value < 0:
raise ValueError('Expected >= 0')
super().__set__(instance, value)
class PosInteger(Integer, Positive):
pass
class PosFloat(Float, Positive):
pass
Finally to get rid of the repeated variable's name in the descriptor constructor, David use a metaclass to inject the name into the descriptor:
class StructMeta(type):
def __new__(cls, name, bases, clsdict):
fields = [ key for key, val in clsdict.items()
if isinstance(val, Descriptor) ]
for name in fields:
clsdict[name].name = name
clsobj = super().__new__(cls, name, bases, clsdict)
return clsobj
The Stock class definition now becomes
class Stock(metaclass=StructMeta):
name = SizedString(maxlen=4)
shares = PosInteger()
price = PosFloat()
def __init__(self, name, shares, price):
self.name = name
self.shares = shares
self.price = price
There is still another "problem" that David try to solve: the code repetition inside the
__init__
method.To address this problem, he changes the previous metaclass as follows.
from collections import OrderedDict
class StructMeta(type):
@staticmethod
def __prepare__(cls, name, bases=None):
# this method returns the dictionary used by the class instance.
# To generate a signature the parameters order is crucial, so an
# OrderedDict is used
return OrderedDict()
def __new__(cls, name, bases, clsdict):
fields = [ key for key, val in clsdict.items()
if isinstance(val, Descriptor) ]
for name in fields:
clsdict[name].name = name
# the following block generates the code for __init__ method
if len(fields):
init_code = 'def __init__(self, %s):\n' % \
', '.join(fields)
for name in fields:
init_code += ' self.%s = %s\n' % (name, name)
exec(init_code, globals(), clsdict)
clsobj = super().__new__(cls, name, bases, dict(clsdict))
return clsobj
And the Stock class becomes
class Stock(metaclass=StructMeta):
name = SizedString(maxlen=4)
shares = PosInteger()
price = PosFloat()
At this point it's convenient introduce a
Structure
base class:class Structure(metaclass=StructMeta):
pass
class Stock(Structure):
name = SizedString(maxlen=4)
shares = PosInteger()
price = PosFloat()
And finally we get to the XML part :)
The first goal is to generate the python code from the XML file. To achieve this the David use these functions:
from xml.etree.ElementTree import parse
def _xml_to_code(filename):
doc = parse(filename)
code = ''
for st in doc.findall('structure'):
code += _xml_struct_code(st)
return code
def _xml_struct_code(st):
stname = st.get('name')
code = 'class %s(Structure):\n' % stname
for field in st.findall('field'):
name = field.text.strip()
dtype = field.get('type')
kwargs = ', '.join('%s=%s' % (key, val)
for key, val in field.items()
if key != 'type')
code += ' %s = %s(%s)\n' % (name, dtype, kwargs)
return code
And the result of parsing the
structure.xml
file (defined at the beginning of the blogpost) is:>>> print(_xml_to_code("structures.xml"))
class Stock(Structure):
name = SizedString(maxlen=4)
shares = PosInteger()
price = PosFloat()
The final step consists in hooking to the python import system. Full details about the new Import Hooks feature of Python3.3 are found at [PEP-302].
We begin defining a new importer class to append at
sys.meta_path
import os
class StructImporter:
def __init__(self, path):
self._path = path
def find_module(self, fullname, path=None):
name = fullname.rpartition('.')[-1]
if path is None:
path = self._path
for dn in path:
filename = os.path.join(dn, name+'.xml')
if os.path.exists(filename):
return StructXMLLoader(filename)
return None
And an XML module loader
import imp
class StructXMLLoader:
def __init__(self, filename):
self._filename = filename
def load_module(self, fullname):
mod = sys.modules.setdefault(fullname,
imp.new_module(fullname))
mod.__file__ = self._filename
mod.__loader__ = self
code = _xml_to_code(self._filename)
# actually this is bad. I should use mod.__dict__
# instead of globals(), and add an import statement into
# "code" to load Structure and the other classes.
exec(code, globals(), mod.__dict__)
return mod
import sys
def install_importer(path=sys.path):
sys.meta_path.append(StructImporter(path))
install_importer()
And finally here we are:
Python3.3 -i xmlimport.py
>>> from structures import *
>>> s = Stock("GOOG", 1, 1.0)
You can find the final version of the
xmlimporter.py
and structures.xml
under the folderpython_metaprogramming
in my git repository at: git://github.com/cybercase/funproject.git
If you got 3 hours to spend, and a lot of love for this metaprogramming stuff, I really suggest to watch the entire video from David Beazley. Also, I apologize in advance for any error in this blogpost.
No comments:
Post a Comment